Abstract

AbstractThis investigation is performed to study the optimal operation decision of two‐chamber microbial fuel cell (MFC) system under uncertainty. To gain insight into the mechanism of uncertainty propagation, a Quasi‐Monte Carlo method‐based stochastic analysis is conducted not only to elucidate the effect of each uncertain parameter on the variability of power density output, but also to illustrate the interactive effects of the all uncertain parameters on the performance of MFC. Moreover, a systematic stochastic simulation‐based multi‐objective genetic algorithm framework is proposed to identify a set of Pareto‐optimal robust operation strategies, which is helpful to provide an imperative insight into the relationship between the mean and standard deviation of output power density. The results indicate that (1) the coefficient of variance (COV) value of output power density has a linear relationship with the COV value of each uncertainty parameter as well as all interactive parameters; and (2) a significant performance improvement with respect to both mean and standard deviation of power density is observed by implementing the multi‐objective robust optimization. These results thus validate that the proposed uncertainty analysis and robust optimization framework provide a promising tool for robust optimal design and operation of fuel cell systems under uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.