Abstract

A quantum harmonic oscillator (spring subsystem) is stabilized towards a target Fock state by reservoir engineering. This passive and open-loop stabilization works by consecutive and identical Hamiltonian interactions with auxiliary systems, here three-level atoms (the auxiliary ladder subsystem), followed by a partial trace over these auxiliary atoms. A scalar control input governs the interaction, defining which atomic transition in the ladder subsystem is in resonance with the spring subsystem. We use it to build a time-varying interaction with individual atoms, that combines three non-commuting steps. We show that the resulting reservoir robustly stabilizes any initial spring state distributed between 0 and 4 n¯ + 3 quanta of vibrations towards a pure target Fock state of vibration number n¯. The convergence proof relies on the construction of a strict Lyapunov function for the Kraus map induced by this reservoir setting on the spring subsystem. Simulations with realistic parameters corresponding to the quantum electrodynamics setup at Ecole Normale Supérieure further illustrate the robustness of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.