Abstract

In an attempt to support robust automated sampling and analysis of mammalian cell bioreactors, an integrated platform, BaychroMAT®, was developed which includes an innovative sterile sampling device, automated sample transport, a sample preparation module, online analyzers, and communication interfaces to process automation systems. The robustness of this platform was verified by applying it to a laboratory-scale perfusion bioreactor that was operated for over 100 days. Both manual and automated samples were collected over the course of the run and a comparison was made for cell density, viability, glucose, and lactate concentrations. The highest variability (14.4%) was seen for cell density estimates while those for viability, glucose, and lactate were 0.7, 12.9, and 8.2%, respectively. In addition, cell density set-point changes were made towards the end of the perfusion culture and the high frequency automated samples provided a higher resolution description of the dynamics of cell density change compared to less frequent manual sampling. Overall, our results indicate stable and robust operation of the BaychroMAT® platform in a long-term perfusion culture. This success should readily translate to shorter duration fed-batch cultures thereby enabling feed-back control based on real-time nutrient measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call