Abstract

Robust topological navigation strategy for omnidirectional mobile robot using an omnidirectional camera is described. The navigation system is composed of on-line and off-line stages. During the off-line learning stage, the robot performs paths based on motion model about omnidirectional motion structure and records a set of ordered key images from omnidirectional camera. From this sequence a topological map is built based on the probabilistic technique and the loop closure detection algorithm, which can deal with the perceptual aliasing problem in mapping process. Each topological node provides a set of omnidirectional images characterized by geometrical affine and scale invariant keypoints combined with GPU implementation. Given a topological node as a target, the robot navigation mission is a concatenation of topological node subsets. In the on-line navigation stage, the robot hierarchical localizes itself to the most likely node through the robust probability distribution global localization algorithm, and estimates the relative robot pose in topological node with an effective solution to the classical five-point relative pose estimation algorithm. Then the robot is controlled by a vision based control law adapted to omnidirectional cameras to follow the visual path. Experiment results carried out with a real robot in an indoor environment show the performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.