Abstract

This paper addresses the problem of observer-based sensor fault reconstruction for discretetime systems subject to external disturbances via a descriptor system approach. First, an augmented descriptor system is formulated by letting the sensor fault term be an auxiliary state vector; then a discrete-time descriptor state observer is constructed to achieve concurrent reconstructions of original system states and sensor faults. Sufficient and necessary conditions for the asymptotic stability of the proposed observer are explicitly provided. To broaden its application scope, less restrictive existence conditions are further discussed. Further, sufficient conditions for the robust stability of the proposed observer are formulated in terms of linear matrix inequalities (LMIs) that can be conveniently solved using LMI optimization techniques. After that, an extension of the proposed linear approach to discretetime nonlinear systems with Lipschitz constraint is investigated. At last, two illustrative examples are given to verify the effectiveness of the proposed techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.