Abstract
In recent work, we introduced the asymptotic theory of quantum robust control, which enables control of moments of quantum observables and gates in the presence of Hamiltonian uncertainty or field noise. In this paper, we extend this theory of quantum robust control to encompass two of the most important generalizations: robust control of arbitrary quantum observables and robust control of quantum systems sustaining environmental decoherence. In addition, we present deterministic Pareto optimization algorithms that can be applied in conjunction with either asymptotic or leading order measures of robustness. This enables robust control of any observable in quantum systems with any initial density matrix, and for which the entropy can change arbitrarily during the time evolution. Methods for robust optimal control of open quantum systems are presented that maximize the expected value of a quantum control objective while minimizing the expected environmentally induced decoherence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.