Abstract

Variations of target appearances due to illumination changes, heavy occlusions, and target deformations are the major factors for tracking drift. In this paper, we show that the tracking drift can be effectively corrected by exploiting the relationship between the current tracker and its historical tracker snapshots. Here, a multi-expert framework is established by the current tracker and its historical trained tracker snapshots. The proposed scheme is formulated into a unified discrete graph optimization framework, whose nodes are modeled by the hypotheses of the multiple experts. Furthermore, an exact solution of the discrete graph exists giving the object state estimation at each time step. With the unary and binary compatibility graph scores defined properly, the proposed framework corrects the tracker drift via selecting the best expert hypothesis, which implicitly analyzes the recent performance of the multi-expert by only evaluating graph scores at the current frame. Three base trackers are integrated into the proposed framework to validate its effectiveness. We first integrate the online SVM on a budget algorithm into the framework with significant improvement. Then, the regression correlation filters with hand-crafted features and deep convolutional neural network features are introduced, respectively, to further boost the tracking performance. The proposed three trackers are extensively evaluated on three data sets: TB-50, TB-100, and VOT2015. The experimental results demonstrate the excellent performance of the proposed approaches against the state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.