Abstract

We introduce a new general framework for the recognition of complex visual scenes, which is motivated by biology: We describe a hierarchical system that closely follows the organization of visual cortex and builds an increasingly complex and invariant feature representation by alternating between a template matching and a maximum pooling operation. We demonstrate the strength of the approach on a range of recognition tasks: From invariant single object recognition in clutter to multiclass categorization problems and complex scene understanding tasks that rely on the recognition of both shape-based as well as texture-based objects. Given the biological constraints that the system had to satisfy, the approach performs surprisingly well: It has the capability of learning from only a few training examples and competes with state-of-the-art systems. We also discuss the existence of a universal, redundant dictionary of features that could handle the recognition of most object categories. In addition to its relevance for computer vision, the success of this approach suggests a plausibility proof for a class of feedforward models of object recognition in cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.