Abstract

Two-Fluid Ten-Moment plasma flow equations are a Two-Fluid (ions and electrons)-based description of the plasma in which fluid is modeled by Ten-Moment Gaussian closure equations. This results in a tensorial description of the pressure and hence allows anisotropic effects in the plasmas which are important in several applications. In addition, this model also allows non-quasineutral effects. The key contribution of this article is the design of robust finite volume numerical schemes for this model. This includes a positivity preserving HLLC solver for three-dimensional Ten-Moment equations and a positivity preserving reconstruction process. In addition, to overcome time restriction imposed by stiff source terms, we design an implicit source discretization which results in an inversion of a local linear system (in each cell) at each time step. Numerical results are presented to demonstrate robustness and accuracy of the proposed schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call