Abstract

In this paper, numerical methods for solving the transonic full potential equation are developed. The governing equation is discretized by a flux-biasing finite volume method. The resulting non-linear algebraic system is solved by using a continuation method with full Newton iteration. The continuation method is based on solving a highly ‘upstream-weighted’ discretization and then gradually reducing the upstream weighting. A general PCG-like sparse matrix iterative solver is used to solve the Jacobians at each non-linear step. Various types of incomplete LU (ILU) preconditioners and ordering techniques are compared. Numerical results are presented to demonstrate that these methods are efficient and robust for solving the transonic potential equation in the workstation computing environment. © 1997 by John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.