Abstract

This paper deals with numerical treatment of singularly perturbed parabolic differential equations having delay on the zeroth and first order derivative terms. The solution of the considered problem exhibits boundary layer behaviour as the perturbation parameter tends to zero. The equation is solved using ?-method in temporal discretization and exponentially fitted finite difference method in spatial discretization. The stability of the scheme is proved by using solution bound technique by constructing barrier functions. The parameter uniform convergence analysis of the scheme is carried out and it is shown to be accurate of order O(N-2/N-1+c?+(?t)2) for the case ?= 1/2, where N is the number of mesh points in spatial discretization and ?t is the mesh size in temporal discretization. Numerical examples are considered for validating the theoretical analysis of the scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.