Abstract

This paper presents a novel robust Model Predictive Control (MPC) algorithm for nonlinear systems represented through quasi-Linear Parameter Varying (qLPV) models. The nominal MPC predictions are made considering a frozen scheduling parameter guess, which is computationally cheaper than nonlinear predictions, while zonotopes bound the disturbance propagation along the prediction. These sets are computed with respect to the bounds of the variation of scheduling parameters, offering reduced conservatism of the closed-loop dynamics and ensuring input-to-state stability and recursive feasibility properties. A DC-DC converter benchmark example is used to illustrate the advantages of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.