Abstract

Partial least squares regression (PLS regression) is used as an alternative for ordinary least squares regression in the presence of multicollinearity. This occurrence is common in chemical engineering problems. In addition to the linear form of PLS, there are other versions that are based on a nonlinear approach, such as the quadratic PLS (QPLS2). The difference between QPLS2 and the regular PLS algorithm is the use of quadratic regression instead of OLS regression in the calculations of latent variables. In this paper we propose a robust version of QPLS2 to overcome sensitivity to outliers using the Blocked Adaptive Computationally Efficient Outlier Nominators (BACON) algorithm. Our hybrid method is tested on both real and simulated data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.