Abstract
Robust nonlinear feedforward–feedback controllers are designed for a multiscale system that dynamically couples kinetic Monte Carlo (KMC) and finite difference (FD) simulation codes. The coupled codes simulate the copper electrodeposition process for manufacturing on-chip copper interconnects in electronic devices. The control objective is to regulate the current density subject to the condition that the steady-state fluctuation of the overpotential remains bounded within ±0.01 V. The controller designs incorporate a low-order stochastic model that captures the input–output behavior of the coupled KMC–FD code. The controllers achieve the objectives and the closed-loop responses implemented on the low-order model and the coupled KMC–FD code match well within stochastic variations. The nonlinear feedforward control reduces the rise time of the controller response while the feedback control ensures robustness in the presence of model uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.