Abstract

The permanent-magnet synchronous motor (PMSM) system, which is a nonlinear dynamic system, will demonstrate a variety of chaotic phenomena when its parameters or external inputs fall into a certain area, which will lead to a deterioration of its performance. Thus, chaos should be suppressed or eliminated. In this paper, the property of equilibrium points is analyzed, and the condition for the occurrence of a Hopf bifurcation in a PMSM system is given based on a mathematical model of the PMSM system with a bifurcation diagram, a Lyapunov exponent map and phase plane diagrams given. After the drawbacks of the existing control methods have been analyzed, a robust nonlinear feedback controller is designed to control the chaos in the PMSM system with a load torque disturbance. The object is to eliminate the chaos and to drive the system speed to a desired value, Numerical simulation proves the validity of this control method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call