Abstract

With the development of information theoretical learning, maximum correntropy criterion (MCC) has shown its utility in non-Gaussian information approximation. The MCC has been applied in Gaussian filters to provide robust estimation under non-Gaussian environment. The extension of MCC to its information form enables robust distributed estimation. In this paper, a new MCC based diffusion information filter is developed for distributed multiple sensor estimation. Non-Gaussianity due to nonlinear dynamics and measurement can be accounted for by incorporating both state estimation error and measurement uncertainty into the correntropy. A numerical example is used to demonstrate the effectiveness of the proposed MCC based diffusion information filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.