Abstract
A robust nonlinear analytical redundancy (RNLAR) technique is presented to detect and isolate actuator and sensor faults in a mobile robot. Both model-plant-mismatch (MPM) and process disturbance are considered during fault detection. The RNLAR is used to design primary residual vectors (PRV), which are highly sensitive to the faults and less sensitive to MPM and process disturbance, for sensor and actuator fault detection. The PRVs are then transformed into a set of structured residual vectors (SRV) for fault isolation. Experimental results on a Pioneer 3-DX mobile robot are presented to justify the efiectiveness of the RNLAR scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.