Abstract
This study introduces a Non-monotonic Lyapunov (NML) framework aimed at stability evaluation and controller design for continuous-time systems, particularly under conditions of uncertainty. Conventional Lyapunov techniques often exhibit a conservative nature, particularly in the context of uncertain systems, which necessitates the development of less conservative alternatives like NML. The NML methodology distinguishes itself by not imposing strict monotonicity requirements for demonstrating the decrease of a Lyapunov functional. Consequently, this paper derives new stability and stabilization criteria framed as matrix inequalities applicable to a specific class of uncertain systems. The practical applicability of the introduced approach is illustrated through controller design for uncertain systems, exemplified by a nonlinear bilateral teleoperation model. Assorted demonstrative examples and simulation outcomes support the findings, underscoring the NML approach’s efficaciousness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.