Abstract
The effect of harvest year on near-infrared spectroscopy (NIRS) prediction models to determine postharvest quality of mango was evaluated. Diffuse reflectance spectra in region of 700–1100nm were used to develop calibration models for firmness, total soluble solids (TSS), titratable acidity (TA) and ripening index (RPI) using partial least squares (PLS) regression analysis. The results showed that model robustness was influenced by harvest year. High prediction error was found when models from single harvest year were used to predict the data of other years, whereas using combined data from two or three years for calibration greatly enhanced the prediction accuracy. The prediction models established from three-year data performed the most suitably for prediction of TSS (R2=0.9; SEP=1.2%), firmness (R2=0.82; SEP=4.22N), TA (R2=0.74; SEP=0.38 %) and RPI (R2=0.8; SEP=0.8). Classification of mango ripeness was successfully achieved using second derivative pretreated spectra with an accuracy of more than 80%. The results indicated that NIRS can be used as a reliable non-destructive technique for mango quality assessment and a robust model could be developed when effect of harvest year was taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.