Abstract

BackgroundCerebral amyloid angiopathy (CAA) is a common cerebral small vessel disease of the aged and a prominent comorbidity of Alzheimer’s disease (AD). CAA can promote a variety of vascular-related pathologies including neuroinflammation, cerebral infarction, and hemorrhages, which can all contribute to vascular cognitive impairment and dementia (VCID). Our understanding of the pathogenesis of CAA remains limited and further investigation of this condition requires better preclinical animal models that more accurately reflect the human disease. Recently, we generated a novel transgenic rat model for CAA (rTg-DI) that develops robust and progressive microvascular CAA, consistent microhemorrhages and behavioral deficits.MethodsIn the current study, we investigated perivascular pathological processes that accompany the onset and progressive accumulation of microvascular CAA in this model. Cohorts of rTg-DI rats were aged to 3 months with the onset of CAA and to 12 months with advanced stage disease and then quantitatively analyzed for progression of CAA, perivascular glial activation, inflammatory markers, and perivascular stress.ResultsThe rTg-DI rats developed early-onset and robust accumulation of microvascular amyloid. As the disease progressed, rTg-DI rats exhibited increased numbers of astrocytes and activated microglia which were accompanied by expression of a distinct subset of inflammatory markers, perivascular pericyte degeneration, astrocytic caspase 3 activation, and disruption of neuronal axonal integrity.ConclusionsTaken together, these results demonstrate that rTg-DI rats faithfully mimic numerous aspects of human microvascular CAA and provide new experimental insight into the pathogenesis of neuroinflammation and perivascular stress associated with the onset and progression of this condition, suggesting new potential therapeutic targets for this condition. The rTg-DI rats provide an improved preclinical platform for developing new biomarkers and testing therapeutic strategies for microvascular CAA.

Highlights

  • Cerebral amyloid angiopathy (CAA) is a common cerebral small vessel disease of the aged and a prominent comorbidity of Alzheimer’s disease (AD)

  • These findings demonstrate that the rTg-DI rat model consistently develops early-onset and extensive cerebral vascular Amyloid beta protein (Aβ) accumulation in the brain

  • Matrix metalloproteinase 9 (MMP9) showed increased expression at advanced stage of disease, and this is likely associated with the microbleed phenotype associated with CAA. These results indicate that the pathogenesis of CAA type-1 in rTg-DI rats triggers neuroinflammation in the brain, but the gene expression pattern is unique, can be temporal, and differs from that of Aβ plaque-related neuroinflammation

Read more

Summary

Introduction

Cerebral amyloid angiopathy (CAA) is a common cerebral small vessel disease of the aged and a prominent comorbidity of Alzheimer’s disease (AD). CAA can promote a variety of vascular-related pathologies including neuroinflammation, cerebral infarction, and hemorrhages, which can all contribute to vascular cognitive impairment and dementia (VCID). Cerebral amyloid angiopathy (CAA) is a prominent cerebral small vessel disease characterized by the deposition of fibrillar amyloid beta peptide (Aβ) within small arteries and arterioles of meninges and cortex as well as the brain capillaries [1, 2]. CAA can promote cerebral infarction, intracerebral hemorrhages (ICH), and microbleeds [1, 2, 8, 9]; all of which can contribute to vascular cognitive impairment and dementia (VCID). A better understanding of the mechanisms involved in CAA pathogenesis may be helpful in the design of therapeutic approaches targeting this condition

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.