Abstract

In this paper, we analyze vibration-assisted sequential tunneling (including current-voltage characteristics and zero-frequency shot noise) through a molecular quantum dot with two electronic orbitals asymmetrically coupled to the internal vibration. We employ rate equations for the case of equilibrated phonons, and strong Coulomb blockade. We find that a system with a strongly phonon-coupled ground state orbital and weakly phonon-coupled excited state orbital exhibits strong negative differential conductance; and it also shows super-Poissonian current noise. We discuss in detail the reasons and conditions for the appearance of negative differential conductance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.