Abstract
We propose a novel method and algorithm for the analysis and clustering of mixed-type data using a hierarchical approach based on Forward Search. In our procedure, the identification of groups is based on the identification of similar trajectories and then linked to very intuitive two-dimensional maps. The proposed algorithm can use different measures for the calculation of distance in the case of mixed-type data, such as Gower’s metric and Related metric scaling. A key feature of our algorithm is its ability to discard redundant information from a given set of variables. The practical usefulness of the algorithm is illustrated through two applications of high relevance for empirical economic research. The first one focuses on comparing different indicators of environmental policy stringency in different countries. The second one applies our procedure to identify clusters of countries based on information regarding their institutional characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.