Abstract

This paper presents mathematical programming models that generate optimal daily allocation of bicycles to the stations of a bike-sharing system. First, a time-space network is constructed to describe time-dependent bike flows in the system. Next, a bike fleet allocation model that considers average historical demand and fixed fleet size is established based on the time-space network. In addition to fleet allocation in multiple periods, this model generates least cost empty bicycle redistribution plans to meet demand in subsequent time periods. The model aims to correct demand asymmetry in bike-sharing systems, where flow from one station to another is seldom equal to the flow in the opposing direction. An extension of the model that relaxes the fleet size constraint to determine optimal fleet size in supporting planning stage decisions is also presented in the paper. Moreover, we describe uncertain bike demands using some prescribed uncertainty sets and develop robust bike fleet allocation models that minimize total system cost in the worst-case or maximum demand scenarios derived from the uncertainty sets. Numerical experiments were conducted based on the New Taipei City’s public bike system to demonstrate the applicability and performance of the proposed models. In addition, this research considers two performance measures, robust price and hedge value, in order to investigate the tradeoff between robustness and optimality, as well as the benefit of applying robust solutions relative to nominal optimal solutions in uncertain demand situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.