Abstract

We extend a recent methodology called multi-parametric NCO-tracking for the design of parametric controllers for continuous-time linear dynamic systems in the presence of uncertainty The approach involves backing-off the path and terminal state constraints based on a worst-case uncertainty propagation determined using either interval analysis or ellipsoidal calculus. We address the case of additive uncertainty and we discuss approaches to handling multiplicative uncertainty that retain tractability of the mp-NCO-tracking design problem, subject to extra conservatism. These developments are illustrated with the case study of a fluidized catalytic cracking (FCC) unit operated in partial combustion mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.