Abstract
In this paper, we develop multigrid solvers for the biharmonic problem in the framework of isogeometric analysis (IgA). In this framework, one typically sets up B-splines on the unit square or cube and transforms them to the domain of interest by a global smooth geometry function. With this approach, it is feasible to set up H2-conforming discretizations. We propose two multigrid methods for such a discretization, one based on Gauss–Seidel smoothing and one based on mass smoothing. We prove that both are robust in the grid size, the latter is also robust in the spline degree. Numerical experiments illustrate the convergence theory and indicate the efficiency of the proposed multigrid approaches, particularly of a hybrid approach combining both smoothers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.