Abstract

We present a groundbreaking and versatile approach to multi-mode rainbow trapping in photonic crystal waveguides (PCWs), overcoming long-standing limitations in photonic device design. Our innovative semi-bilayer PC design, formed by stacking two PCs, enables the realization of new photonic modes that were previously inaccessible, leading to enhanced device flexibility, improved performance, and increased resilience to defects and imperfections. By meticulously engineering a chirped PC within the PCW, we achieve multi-mode light trapping at distinct positions for different frequencies along the waveguide, effectively creating a rainbow of light. This study paves the way for efficient and robust trapping and demultiplexing of multiple wavelengths, opening up new avenues for on-chip nanophotonic applications. Moreover, the realization of ultra-high-quality (Q) factor Fano resonances within the waveguide cavity unveils unprecedented possibilities for designing on-chip nanophotonic devices. The diverse array of Fano resonances holds immense potentials for developing novel optical filters, switches, and lasers with exceptionally low thresholds. Our proposed structure offers a more compact, efficient, and robust solution for multi-wavelength photonic device applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call