Abstract
Moving object segmentation in compressed domain plays an important role in many real-time applications, e.g. video indexing, video transcoding, video surveillance, etc. Because H.264/AVC is the up-to-date video-coding standard, few literatures have been reported in the area of video analysis on H.264/AVC compressed video. Compared with the former MPEG standard, H.264/AVC employs several new coding tools and provides a different video format. As a consequence, moving object segmentation on H.264/AVC compressed video is a new task and challenging work. In this paper, a robust approach to extract moving objects on H.264/AVC compressed video is proposed. Our algorithm employs a block-based Markov Random Field (MRF) model to segment moving objects from the sparse motion vector field obtained directly from the bitstream. In the proposed method, object tracking is integrated in the uniform MRF model and exploits the object temporal consistency simultaneously. Experiments show that our approach provides the remarkable performance and can extract moving objects efficiently and robustly. The prominent applications of the proposed algorithm are object-based transcoding, fast moving object detection, video analysis on compressed video, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.