Abstract

The Moving Actuator type artificial heart(AnyHeart) as well as many other artificial hearts uses a motor as its power source. For controllability of control parameters such as pump rate, pump output, blood pressure profile and flow form, the precise motor speed control is important. However, because the implantable device has limited carrying capacity of hardware components in size and number, applying diverse motor control methods are not possible. In addition, the existing PI (Proportional-Integral) motor controller does not show satisfactory performance. A new controller that is sufficiently robust for the changes of load and physical system parameters has been designed and tested. The robust speed controller is based on the sliding mode control method that is applicable to a system of which the ranges of uncertainty in physical parameters are known. In a mock circulation system test, the actual speed showed good tracking characteristics in respect to the reference speed. Fast follow-up characteristics were also observed under high afterload and speed conditions. The speed error, current and power consumption were reduced by about 40%. The proposed control technique overcomes the limitations of the PI controller, and makes important improvements in both performance and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.