Abstract

Although carbon-supported platinum (Pt/C) is still considered the most active electrocatalyst for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), its applications in metal-air batteries as a cathode catalyst, or for oxygen generation via water splitting electrolysis as an anode catalyst is mainly constrained by the insufficient kinetic activity and stability in the oxygen evolution reaction (OER). Here, MOF-253-derived nitrogen-doped carbon (N/C)-confined Pt single nanocrystals (Pt@N/C) have been synthesized and shown to be efficient catalysts for the OER. Even with low Pt mass loading of 6.1 wt% (Pt@N/C-10), the catalyst exhibits greatly improved activity and long-time stability as an efficient OER catalyst. Such high catalytic performance is attributed to the core-shell structure relationship, in which the active N-doped-C shell not only provides a protective shield to avoid rapid Pt nanocrystal oxidation at high potentials and inhibits the Pt migration and agglomeration, but also improves the conductivity and charge transfer kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.