Abstract

We study the effect of biological confounders on the model selection problem between Kingman coalescents with population growth, and Ξ-coalescents involving simultaneous multiple mergers. We use a low dimensional, computationally tractable summary statistic, dubbed the singleton-tail statistic, to carry out approximate likelihood ratio tests between these model classes. The singleton-tail statistic has been shown to distinguish between them with high power in the simple setting of neutrally evolving, panmictic populations without recombination. We extend this work by showing that cryptic recombination and selection do not diminish the power of the test, but that misspecifying population structure does. Furthermore, we demonstrate that the singleton-tail statistic can also solve the more challenging model selection problem between multiple mergers due to selective sweeps, and multiple mergers due to high fecundity with moderate power of up to 30%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.