Abstract

SummaryIn networked systems, intermittent failures in data transmission are usually inevitable due to the limited bandwidth of the communication channel, and an effective countermeasure is to add redundance so as to improve the reliability of the communication service. This paper is concerned with the model predictive control (MPC) problem by using static output feedback for a class of polytopic uncertain systems with redundant channels under both input and output constraints. By utilizing the min–max control approach combined with stochastic analysis, sufficient conditions are established to guarantee the feasibility of the designed MPC scheme that ensures the robust stability of the closed‐loop system. In terms of the solution to an auxiliary optimization problem, an easy‐to‐implement MPC algorithm is proposed to obtain the desired sub‐optimal control sequence as well as the upper bound of the quadratic cost function. Finally, to illustrate its effectiveness, the proposed design method is applied to control a networked direct current motor system. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call