Abstract

This study deals with active robust modal vibration control of rotor systems supported by magnetic bearings. The inherent divergent rigid body modes are suppressed by using a dual-level control approach. Finite element method is applied to formulate the rotor model. The Timoshenko beam theory, including the effects of shearing deformations and rotary inertia, is considered in this work. Because practical control systems are often limited by its sensing, hardware, and computation speed capabilities, the reduced order approach is often used for a control system design. This study applies the independent modal space control (IMSC) approach to extract the accurate lower modes from the complex rotor systems with the gyroscopic effect considered. In practice, it is extremely difficult to model the complete dynamic characteristics of a rotor system. The model may contain unmodelled dynamics and parameter changes, which can be viewed as uncertainties of a system. As opposed to the conventional control approach, which requires fixed and accurate system parameters, this study considers robust control approach to design a controller capable of tolerating external disturbance and model uncertainties. It is demonstrated that the proposed approach is effective for vibration suppression when the system is subjected to impulsive or step loading, speed variation, and sudden loss of disk mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.