Abstract

We study the performance of a recently proposed robust ML estimation procedure for unknown numbers of signals. This approach finds the ML estimate for the maximum number of signals and selects relevant components associated with the true parameters from the estimated parameter vector. Its computational cost is significantly lower than conventional methods based on information theoretic criteria or multiple hypothesis tests. We show that the covariance matrix of relevant estimates is upper and lower bounded by two covariance matrices. These bounds are easy to compute by existing results for standard ML estimation. Our analysis is further confirmed by numerical experiments over a wide range of SNRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.