Abstract
The traditional estimation of mixture regression models is based on the assumption of normality (symmetry) of component errors and thus is sensitive to outliers, heavy-tailed errors and/or asymmetric errors. In this work we present a proposal to deal with these issues simultaneously in the context of the mixture regression by extending the classic normal model by assuming that the random errors follow a scale mixtures of skew-normal distributions. This approach allows us to model data with great flexibility, accommodating skewness and heavy tails. The main virtue of considering the mixture regression models under the class of scale mixtures of skew-normal distributions is that they have a nice hierarchical representation which allows easy implementation of inference. We develop a simple EM-type algorithm to perform maximum likelihood inference of the parameters of the proposed model. In order to examine the robust aspect of this flexible model against outlying observations, some simulation studies are also presented. Finally, a real data set is analyzed, illustrating the usefulness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.