Abstract
Incomplete multi-view clustering (IMVC) aims to address the clustering problem of multi-view data with partially missing samples and has received widespread attention in recent years. Most existing IMVC methods still have the following issues that require to be further addressed. They focus solely on the first-order correlation information among samples, neglecting the more intricate high-order connections. Additionally, these methods always overlook the noise or inaccuracies in the similarity matrix. To address above issues, a novel method named Robust Mixed-order Graph Learning (RMoGL) is proposed for IMVC. Specifically, to enhance the robustness to noise, the similarity matrices are separated into clean graphs and noise graphs. To capture complex high-order relationships among samples, the dynamic high-order similarity graphs are innovatively constructed from the recovered data. The clean graphs are endowed with mixed-order information and tend towards to obtain a consensus graph via a self-weighted manner. An efficient algorithm based on Alternating Direction Method of Multipliers (ADMM) is designed to solve the proposed RMoGL, and superior performance is demonstrated by compared with nine state-of-the-art methods across eight datasets. The source code of this work is available at https://github.com/guowei1314/RMoGL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.