Abstract

Game theory has traditionally used real-valued utility functions in decision-making problems. However, the real information available to assess these utility functions is normally uncertain, suggesting the use of uncertainty distributions for a more realistic modelling. In this sense, utilities results or pay-offs have been normally modelled with probability distributions, assuming random uncertainty. However, when statistical information is unavailable, probability may not be the most adequate paradigm, and can lead to very large execution times when some real complex problems are addressed. In this article possibility distributions are used to model the uncertainty of utility functions when the strategies are probability distributions (mixed strategies) over a set of original and discrete strategies (pure strategies). Two dual approaches to solve the resulting non-cooperative fuzzy games are proposed: modelling players’ risk aversion, and thus providing realistic conservative strategies. Two examples show the robustness of the strategies obtained with the proposed approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.