Abstract

Adaptive beamforming with sidelobe-level control in the presence of signal steering vector uncertainty is investigated. Unlike the traditional multiconstrained optimization strategy using the interior point method, iterative optimization algorithms with the aid of the alternating direction method of multipliers (ADMM) framework are proposed. The uncertainty set constraint and the sidelobe constraint are formulated into two optimization subproblems and handled with the Lagrange multiplier method. By introducing matrix decomposition techniques, subproblem 1 is transformed into a polynomial root-finding problem that can be solved with low computational complexity. For subproblem 2, a closed-form solution can be obtained directly. Furthermore, for the continuously receiving snapshots case, iterative gradient minimization is introduced and embedded into the ADMM iterations to give an approximate solution free from matrix decompositions. Theoretical analyses and simulations verify the low complexities and performance advantages of the proposed algorithms in the low sample support, steering vector mismatch, and real-time snapshot update scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.