Abstract
The full potential of multi-input multi-output (MIMO) communication systems relies on exploiting channel state information at the transmitter (CSIT), which is, however, often subject to some uncertainty. In this paper, following the worst-case robust philosophy, we consider a robust MIMO precoding design with deterministic imperfect CSIT, formulated as a maximin problem, to maximize the worst-case received signal-to-noise ratio or minimize the worst-case error probability. Given different types of imperfect CSIT in practice, a unified framework is lacking in the literature to tackle various channel uncertainty. In this paper, we address this open problem by considering several classes of uncertainty sets that include most deterministic imperfect CSIT as special cases. We show that, for general convex uncertainty sets, the robust precoder, as the solution to the maximin problem, can be efficiently computed by solving a single convex optimization problem. Furthermore, when it comes to unitarily-invariant convex uncertainty sets, we prove the optimality of a channel-diagonalizing structure and simplify the complex-matrix problem to a real-vector power allocation problem, which is then analytically solved in a waterfilling manner. Finally, for uncertainty sets defined by a generic matrix norm, called the Schatten norm, we provide a fully closed-form solution to the robust precoding design, based on which the robustness of beamforming and uniform-power transmission is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.