Abstract

A robust receiver for multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems is proposed. We are interested in the scenario when only a limited number of observations in both time and frequency domains are available. For this scenario, perfect channel state information is impossible to obtain and the receiver suffers from statistical information mismatch. To overcome this limitation, we first propose the optimum receiver by performing jointly channel and data estimation. For statistical information mismatch, we construct a finite set of covariance matrices and derive a model-selection scheme based on Bayesian Model Selection. Finally, the sliding-window scheme is used in order to enhance the model selection accuracy. Simulation results are presented, showing that the proposed scheme outperforms the conventional scheme under imperfect channel knowledge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call