Abstract

Cognitive Radio (CR) systems are built on the coexistence of primary users (PUs) and secondary users (SUs), the latter being allowed to share spectral resources with the PUs but under strict interference limitations. However, such limitations may easily be violated by SUs if perfect SU-to-PU channel state information (CSI) is not available at the secondary transmitters, which always happens in practice. In this paper, we propose a distributed design of MIMO CR networks under global interference temperature constraints that is robust (in the worst-case sense) against SU-to-PU channel uncertainties. More specifically, we consider two alternative formulations that are complementary to each other in terms of signaling and system performance, namely: a game-theoretical design and a social-oriented optimization. To study and solve the proposed formulations we hinge on the new theory of finite-dimensional variational inequalities (VI) in the complex domain and a novel parallel decomposition technique for nonconvex sum-utility problems with coupling constraints, respectively. A major contribution of this paper is to devise a new class of distributed best-response algorithms with provable convergence. The algorithms differ in computational complexity, convergence speed, communication overhead, and achievable performance; they are thus applicable to a variety of CR scenarios, either cooperative or non-cooperative, which allow the SUs to explore the trade-off between signaling and performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.