Abstract

Robust compact hydraulic actuators are extremely needed in space industry where payload is critical. Microvalves are key component for compact hydraulic actuators. Robust microvalves with large load bearing ability, large flow rate, and high operational frequency are objectives of this research. A FEM analytical approach was used to optimize the valve design. The microvalves were fabricated by novel microfabrication process and scaling laws. Electroformed nickel on silicon substrate was used to make the valve flap and deep RIE etching was adopted to make the valve channels while the metallic valve flap as the etching stop. Test results shown that the flow rate is proportional to the pressure applied. The flow rate is larger than 10 cc/sec at pressure or 40 psi. These microvalves can be used to solve engineering problems where both load bearing and flow rate are major concerns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call