Abstract

Steady state identification is a process control research approximating the successive values of samples in steady state into its average values. According to the plant-wide control hierarchical model, these results implement monitoring and optimizing functions. Thermal power plant operates into a wide range of mean value active power. Systematic plant-wide slow developing disturbances affect the power plant operation performance through deviations of each process variable between its current true process value and the expected good performance relative value. Supervised records are realizations contaminated with stationary correlated noise carrying successive steady state deviations. Long term thermal power plant operation performance monitoring depending on (i) accuracy and precision of steady state identification method and (ii) fitness approximation per process variable versus mean value active power. This paper bases: (i) a computational experiment design to calibrate a steady state identification before to embed into a real system, and (ii) a solution for curve structure to capture good performance relative value per process variable with few knots availability right after the start-up of the plant at base load regime. A case study tracking the cumulative effects of degradation due to fouling on a heat exchanger was performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.