Abstract

Uncertainties caused by climate change and population explosion require suitable methods for estimating grain yield during the growing seasons. This paper evaluates the applicability of the AquaCrop model in the region of western Kenya. The objectives of the study were to: simulate the long-term maize crop yields for the region using AquaCrop model for variable climate scenarios, and estimate the expected yield for the ongoing season. Climate was classified into below normal (<x̅ − 1∂), normal (between x̅ − 1∂ and x̅ + 1∂) and above normal (>x̅ + 1∂) conditions based on the Kenya Meteorological Department (KMD) convention. Simulation of grain yield was based on model calibration results, periodic KMD forecasts and the long-term mean for the seasons. The calibrated model is able to estimate both long-term seasonal grain yield and expected harvest for the ongoing season based on climatic conditions that are compared with the long-term seasonal characteristics and complemented by meteorological forecasts. The ongoing season yield simulation was based on persistence theory of Markov processes whose results strongly correlated (r = 0.9) with actual seasonal observed yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.