Abstract

Myosin VI is a molecular motor that is thought to function both as a transporter and as a cytoskeletal anchor in vivo. Here we use optical tweezers to examine force generation by single molecules of myosin VI under physiological nucleotide concentrations. We find that myosin VI is an efficient transporter at loads of up to ∼2 pN but acts as a cytoskeletal anchor at higher loads. Our data and the resulting model are consistent with an indirect coupling of global structural motions to nucleotide binding and release. The model provides a mechanism by which load may regulate the dual functions of myosin VI in vivo. Our results suggest that myosin VI kinetics are tuned such that the motor maintains a consistent level of mechanical tension within the cell, a property potentially shared by other mechanosensitive proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.