Abstract

This paper is a continuation of the work in [11] and [2] on the problem of estimating by a linear estimator, N unobservable input vectors, undergoing the same linear transformation, from noise-corrupted observable output vectors. Whereas in the aforementioned papers, only the matrix representing the linear transformation was assumed uncertain, here we are concerned with the case in which the second order statistics of the noise vectors (i.e., their covariance matrices) are also subjected to uncertainty. We seek a robust mean-squared error estimator immuned against both sources of uncertainty. We show that the optimal robust mean-squared error estimator has a special form represented by an elementary block circulant matrix, and moreover when the uncertainty sets are ellipsoidal-like, the problem of finding the optimal estimator matrix can be reduced to solving an explicit semidefinite programming problem, whose size is independent of N.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.