Abstract

This paper considers the problem of estimation of a low-rank matrix when most of its entries are not observed and some of the observed entries are corrupted. The observations are noisy realizations of a sum of a low-rank matrix, which we wish to estimate, and a second matrix having a complementary sparse structure such as elementwise sparsity or columnwise sparsity. We analyze a class of estimators obtained as solutions of a constrained convex optimization problem combining the nuclear norm penalty and a convex relaxation penalty for the sparse constraint. Our assumptions allow for simultaneous presence of random and deterministic patterns in the sampling scheme. We establish rates of convergence for the low-rank component from partial and corrupted observations in the presence of noise and we show that these rates are minimax optimal up to logarithmic factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.