Abstract

In science and especially in economics, agent-based modeling has become a widely used modeling approach. These models are often formulated as a large system of difference equations. In this study, we discuss two aspects, numerical modeling and the probabilistic description for two agent-based computational economic market models: the Levy–Levy–Solomon model and the Franke–Westerhoff model. We derive time-continuous formulations of both models, and in particular, we discuss the impact of the time-scaling on the model behavior for the Levy–Levy–Solomon model. For the Franke–Westerhoff model, we proof that a constraint required in the original model is not necessary for stability of the time-continuous model. It is shown that a semi-implicit discretization of the time-continuous system preserves this unconditional stability. In addition, this semi-implicit discretization can be computed at cost comparable to the original model. Furthermore, we discuss possible probabilistic descriptions of time-continuous agent-based computational economic market models. Especially, we present the potential advantages of kinetic theory in order to derive mesoscopic descriptions of agent-based models. Exemplified, we show two probabilistic descriptions of the Levy–Levy–Solomon and Franke–Westerhoff model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.