Abstract

Perpendicular magnetization switching by a magnetic-field-free, energy-efficient electrical approach has remained a great challenge. Here, we demonstrate the realization of robust magnetic-field-free perpendicular magnetization switching in the (101)RuO2/[Pt/Co/Pt] heterojunction by manipulating the spin polarization direction. We proposed that the relative strength of out-of-plane spin currents with out-of-plane spin polarization σz and in-plane spin polarization σy can be effectively manipulated by tuning the nominal thickness of [Pt/Co/Pt] multilayers and the direction of applied electric current with respect to the RuO2 crystal orientation. When the electric current is applied along RuO2 [010] direction and the net spin current with spin polarization σy is canceled out, the "robust" perpendicular magnetization switching driven by pure σz is achieved in (101)RuO2/[Pt/Co/Pt], where the term "robust" means that the switching polarity (counterclockwise) does not change and the switching ratio reduces very slowly with increasing magnitude of in-plane magnetic field Hx and/or Hy in a wide range of ±500 Oe. Our findings provide a technique to effectively manipulate the spin currents, which is beneficial for the investigation of antiferromagnetic spintronic devices with high magnetic field stability and reliable magnetization switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.