Abstract
SummaryIn this paper, we consider the design of robust quadratic regulators for linear systems with probabilistic uncertainty in system parameters. The synthesis algorithms are presented in a convex optimization framework, which optimize with respect to an integral cost. The optimization problem is formulated as a lower‐bound maximization problem and developed in the polynomial chaos framework. Two approaches are considered here. In the first approach, an exact optimization problem is formulated in the infinite‐dimensional space, which is solved approximately using polynomial‐chaos expansions. In the second approach, an approximate problem is formulated using a reduced‐order model and solved exactly. The robustness of the controllers from these two approaches are compared using a realistic flight control problem based on an F16 aircraft model. Linear and nonlinear simulations reveal that the first approach results in a more robust controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.