Abstract

A consistent framework for robust linear quadratic regulators (LQRs) control of power converters is presented. Systems with conventional LQR controllers present good stability properties and are optimal with respect to a certain performance index. However, LQR control does not assure robust stability when the system is highly uncertain. In this paper, a convex model of converter dynamics is obtained taking into account uncertainty of parameters. In addition, the LQR control for switching converters is reviewed. In order to apply the LQR control in the uncertain converter case, we propose to optimize the performance index by using linear matrix inequalities (LMIs). As a consequence, a new robust control method for dc-dc converters is derived. This LMI-LQR control is compared with classical LQR control when designing a boost regulator. Performance of both cases is discussed for load and line perturbations, working at nominal and non nominal conditions. Finally, the correctness of the proposed approach is verified with experimental prototypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.